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ABSTRACT f;ﬁﬂviq

Design techniques of linear optimal control are found
to apply to a minimax problem. With a bounded energy
constraint on the class of admissible disturbances, the
minimax value of an integral quadratic form of state
variables and control can be obtained by finding a positive
definite steady-state solution of a matrix Riccati equation.
The optimal strategies for control and disturbance are
linear functions of state which depend on the numerical
bound of the class of disturbances, the set of initial
conditions, and relative weighting of the state variables
in the cost functional. Analytical design procedures, such
as the root square locus of Chang, which appear in optimal
linear control problems are also valid for this problem.

An equivalent optimal multivariable control problem has
been found whose steady-state solution is obtained by
solving the same matrix Riccati equation as was obtained
from the minimax problem. Sufficient conditions for
existence of solutions to the minimax problem are thus
obtained from the properties of the equivalent optimal
multivariable control problem. The results are illustrated
by solving a second order example.
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A WORST DISTURBANCE DESIGN CRITERION IN THE THEORY OF
ANALYTICAL CONTROL SYSTEMS SYNTHESIS

By

Thomas E. Carter

SUMMARY

Design techniques of linear optimal control are found
to apply to a minimax problem. With a bounded energy
constraint on the class of admissible disturbances, the
minimax value of an integral quadratic form of state
variables and control can be obtained by finding a positive
definite steady-state solution of a matrix Riccati equation.
The optimal strategies for control and disturbance are
linear functions of state which depend on the numerical
bound of the class of disturbances, the set of initial
conditions, and relative weighting of the state variables
in the cost functional. Analytical design procedures, such
as the root square locus of Chang, which appear in optimal
linear control problems are also valid for this problem.

An equivalent optimal multivariable control problem has
been found whose steady-state solution is obtained by
solving the same matrix Riccati equation as was obtained
from the minimax problem. Sufficient conditions for
existence of solutions to the minimax problem are thus
obtained from the properties of the equivalent optimal
multivariable control problem. The results are illustrated
by solving a second order example.

I. INTRODUCTION

LINEAR CONTROL, DIFFERENTIAL GAMES, AND A MINIMAX PROBLEM

In recent years the mathematical conditions for which
linear control is optimal have been well defined.®* 1In 1961,
S. S. L. Chang® published a book on optimal control synthesis
which included a root square locus technique permitting
mathematically optimum linear systems to be analyzed by the
well-known root locus diagram. This technique has recently



been applied to multivariable®’% control problems to provide
an analytical approach to control synthesis of high order
dynamical systems.

In the above analytical synthesis studies, the problem
of disturbances was. not considered in the initial design
phase. It is shown in this work that the same analytical
synthesis techniques can be applied to a problem with a
single control and a bounded energy type disturbance. The
control and disturbance are scalars for this problem, but
no additional difficulty i1s encountered, in principle, if
both are vectors. The problem is formulated as a minimax
problem and 1s solved by the theory of differential games.
For this problem, the control and the disturbance are
viewed as opposing players in a differential game. The
solution leads to linear feedback as the optimum strategy
for both players. Linear control can thus be interpreted
as the best control for the worst of a well defined class
of bounded energy disturbances.

The study of differential games was begun by Isaacs®
His book® is used as a basic reference for much of the
present work and some of his terminology will be used herein.
Unfortunately, his terminology is not in agreement with much
of the usage 1n optimal control theory. These differences
are pointed out in Reference 14. A more rigorous foundation
for the theory of differential games can be found in the
work of Berkowitz®. Application of differential games to
problems in optimal control '° and also to pursuit and evasion
problems can be found '°°''’12 Tn Reference 12 the authors
solve a pursuit-evasion problem which leads to linear feed-
back strategies for both the pursuer and evader, and the
results are closely related to those for the linear optimal
control problem. In the present work a similar relationship
with the linear optimal control problem exists, but in this
case, linear "analytical design concepts" are extended to
include systems subject to worst disturbances. The design
philosophy presented herein can be used to define a set of
linear controls, and a corresponding class of worst
disturbances for which these controls are optimal.

II. FORMULATION

The problem 1s formulated as follows: Consider the
dynamical system

X = AX + bu + cw x(t,) = %, (1.1)




in which x is a real n vector denoting the state of the
system, b and ¢ are real constant n vectors, A is a real
constant nxn matrix, u is a scalar control belonging to
the class Cp of plecewlse continuous functions of time t,
w is a scalar disturbance belonging to some class W of
functions of time. The dot denotes differentiation with
respect to time, and tpy is the initial time. The output
of the dynamical system is

vy = Hx (1.2)

where y is a p-dimensional vector and H is a constant pxn
matrix. The cost functional for this problem is

T

Jlu,wl = [ [ytay + v®lat + xT(T)Px(T) (1.3)
to

where Q is a constant positive definite pXp matrix, P is

a positive definite constant nxn matrix, and T is the time
required to attain a terminal surface of dimension n-1 which
divides the state space into two disjoint n-dimensional
subsets. See Reference 5, Chapter 2.) For each admissible
u(t) and w(t), the solution of (1.1) uniquely determines
(1.3). The problem consists of finding a control u in Cp
and a disturbance w in W so that

Jlu,w] = min max J[u,w]. (1.4)
ueCp weW

The above problem belongs to a class of problems known as
minimax problems. V. P. Grishin® has solved a similar prob-
lem in which the set W of disturbances is the class of
piecewise continuous functions of time whose magnitude is
bounded by a positive constant. We shall consider here the
class W of admissible disturbances to be the set of piece-
wise continuous functions of time which satisfy the relation

T
tj WP (t)dt < p? (1.5)

where p is a positive constant.

In aerospace vehicle control problems, for example, the
class W of admissible disturbances is a class of winds. The
relation (1.5) allows a wind in this class to take on



arbitrarily large magnitudes, either positive or negative,
but an average square magnitude 1s bounded. Admitted in
this class are large disturbances of short duration (gusts)
or small disturbances of long duration (breezes). Not
admitted are large disturbances of long duration (gales).

If T is infinite, it can be seen that since p is finite, any
wind in this class must eventually die out.

_ The number p° can be, for a particular application,
determined empirically. An estimate can be obtained by
computing

[ w?(t)at

128
for a large number of recorded disturbances and taking the
largest value of this integral as p°. It should be pointed
out, however, that the worst disturbance which arises from
a solution of the problem may not resemble any of the
reocrded disturbances and should be examined for reason-
ableness. What a solution of the problem does provide is
the shape of the worst disturbance associated with a given
dynamical system.

In order to solve the minimax problem in which the
disturbance 1s subject to a bounded integral constraint,
we shall introduce a positive Lagrange multiplier X\ and
consider the new cost functional

T
alu,wl = [ [yTay + u® - aw?ldt + xT(T)Px(T) (1.6)
tO

in which the disturbance w(t) now belongs to the class Cp
and the value of A depends on p and X,. We shall require
that the players w and u employ strategies (functions of
state) rather than time functions. For this reason the
function w(t) and u(t) will be given by

w(t) wix(t)]

il

u(t) = ulx(t)] , (1.7)

il

where x(t) is the solution of (1.1). The class of
strategies w(x) and u(x) with the property that w(x(t)] and
ulx(t)] belong to Cp will be denoted Q. In terms of game
theory our problem 1is: glven Xp and p, find strategles u
and w in Q so that

n




G[u,w] = min max Glu,w].
uell wel (1.8)

With the specification of a terminal surface, the
problem is in a form for which fhe theory of differential
games can be applied. We shall restrict our attention to
terminal surfacdes for which we can find a solution having
stable motion with respect to the origin of the state space.
This can be accomplished in two ways.

One way is to choose time as another state variable

X4 and define the terminal surface as the set of points

for which Xn+1 = T where T is a fixed terminal time . Under

dertain controllability and observability conditions, the
limit of the minimax value for this problem exists as T
approaches infinity. It is then shown that this limit is
a Liapunov function, thus insuring stability. Since this
approach follows the usual development found in linear
optimal control?, it will not be presented here.

The other way does not require the concept of a
Liapunov function. Instead, we choose as a terminal
surface an appropriate n-1 dimensional ellipsoid which is
always between the initial state and the origin. Stability
of motion is assured by shrinking the target ellipsoid so
that the terminal state becomes arbitrarily near the origin.
Using this approach, the problem to be solved by application
of differential game theory is as follows:

Given the dynamical system (1.1), and the terminal
surface

xIPx = & (1.9)

which is defined by the positive number 6, and the cost
function (1.6) which depends on 8 and will be denoted
Gglu,w], find strategies u(x) and w(x) and a positive
number A so that

Gglu(x),w(x)] = min max Gglu(x),w(x)] (1.10)
uel wefl

and the constraint (1.5) is not violated.

The quantity Gglu(x),w(x)] is, for a particular p and 9,
a function of x,. It will be denoted Vs(x,) and will be
called the "value" of the game at x,. We shall be
interested in the 1limit of the value of the game as &
approaches zero.

\J



I1T. SOLUTION OF THE PROBLEM

There are two computational methods for analyzing the
problem. The first method is to solve what Isaacs refers
to in Reference 5 as the "main equation." This leads to
the problem of finding a steady-state solution of a matrix-
Riccati equation. The second method is to solve the '"path
equations" associated with the problem. For our problem
the path equations lead to a root square locus technique
similar to that developed by Chang.

A, SOLUTION VIA THE MAIN EQUATION

According to the differential games approach, we form
the ¥ function defined as follows:
Y(x,Vx,u,w) = xTHT QR + w2 - AW? 4 Vg(Ax+bu+cw)
(2.1)
where V, denotes the gradient of a scalar valued function
of x. TFor this ¥ function, the "minimax assumption"

min max }(x,Vx,u,w) = max min H(x,V,,uw) (2.2)
uoow woou

is valid since W is the sum of functions of u and w. Since
A > 0, a necessary and sufficient condition that ¥ be
minimax is that

- _iyT
u = 2ka
(2.3)
1.7
W = -QTVXC’
and the main equation is given by
min mafo(X,Vk,u,W) = 0. (2.4)
u W
For thls problem the maln equatlion becomes
T T T 1T _
X"H QHx + V,Ax - $V, SV = 0 (2.5)




where S = bb~ - %ccT. (2.6)

It is known from the theory of differential games that
the value of the game must satisfy the main equation and
the boundary condition given by the terminal surface. If
the solution of the main equation satisfying the boundary
condition is unique, then that solution is the value of the
game. Since condition (2.3) is necessary and sufficient
for) to be minimax, the problem has only one main equation.
The boundary condition is given by the surface xIPx = 6,

We then choose P so that Vg(x) = xTPx is a solution of the
main equation, if possible, because such a choice of P will
provide a terminal value given by

Ve (x(T)) = 6. (2.7)

Assuming a solution of this form gives

xTHIQHX + 2% PTAX - X PTSPx = O. (2.8)

If equation (2.8) has a solution which is valid for each x
in the state space exterior to the region enclosed by the
terminal set and which satisfies the boundary condition
(1.9), P must satisfy the matricial equation

pTa + ATP - PTSP = -HUQH. (2.9)

Let us assume for the moment that A, S, H, and Q
satisfy whatever conditions are needed in order that a
unique symmetric positive definite matrix P existg
satisfying (2.9). It then follows that Vg(x) = xTPx is the
value of the game in which (1.9) is the terminal surface.
In this case Vi(x) represents the value .at x of a game
whose terminal surface is an n-dimensional ellipsoid con-
taining the origin. We are primarily interested in this
game because taking the limit as & approaches zero, the
terminal state approaches the origin. Recalling that
Vs(x) is the value assoclated with (1.6) and the terminal
surface (1.9) and that V4(x) = & on this surface, we
observe that

1im Vg (x) = V(x) (2.10)
§—0
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where V(x) is defined as the value associated with (1.6)
and the terminal state x = 0.

A result of the above arguments 1s the following
theorem: If P is a unique positive definite solution of
(2.9), then the minimax value of (1.6) for the terminal
surface (1.9) 1s gilven by V(x) = xIPx, and the strategies
(2.3) are optimal for any 6 > 0; the motion of (1.1) for
these strategies is stable with respect to the origin.

Since Vy = 2Px, we can now write explicitly the
expressions for the "best" control and the "worst" wind.
These are

U = - b Px (2.11)

W = >cTPx. (2.12)

The optimal strategy for both players is linear.
Given A, the optimal play depends on Q, H, b, ¢, and A.
These characteristics uniquely define the optimal feedback
strategy for control. In previous linear theory in which
the disturbance was assumed zero, the optimal feedback was
of the same form, but depended only on Q, H, and b. Note
that the more general minimax control reduces to the zero
disturbance optimal linear control as X becomes infinite.
This is seen from équations (2.6), (2.9), and (2.12).

B. CALCULATION OF THE ELLIPSOID .OF INITIAL STATES

The optimal strategies (2.11) and (2.12) depend on A,
which, in turn, depends on p and the initial conditions by
(1.5) and (2.12). As the problem has been formulated xg
and p are_assumed fixed, and we solve for A and strategles
u(x) and w(x) for which the minimax value of (1.3) is
attained. From the standpoint of design, however, it may
be advantageous to specify A and work backward to find the
set of all initial states for which the strategles are
optimal. (Note also that A is a convenient parameter for
representing the combined effects of p and x,, and it will
be used in this manner in the work to follow.)

If N is speciflied so that there exists a unique
positive definite solution of (2.9), then by using the
strategles (2.11) and (2.12), the differential system (1.1)
becomes, 1in closed loop form,




x = Ax x(t,) = %, (2.13)

where A =A-3P (2.14)

and the initial state x, belongs to a set for which (1.5) is
satisfied where the disturbance is given by (2.12).

Let us define a function W of initial state by

T
W(xo) =tj w2(t)at. (2.15)

Since wHt) is nonnegative, W(x,) is at least positive semi-
definite. Its time derivative along solutions of (2.13) is
given by

T
Wx(t)) = - 2(8)PTec Px(¢) (2.16)
)\.2

For this reason, it is apparent that W(xy) is a
quadratic form )

T

w(xo) = X, BX_, (2.17)

if the nxXn matrix B satisfies the linear equation

3 T T
BE + ATB = - PC—QCP. (2.18)
A

The matrix B is the entity that relates A, p, and Xge
It is obtained from A and P by solving (2.18). From (1.5),
E2.15 ,» and (2.17), the initial states for which strategies
2.11) and (2.12) are optimal for a particular A are
contained in the region

T 2
Xq on < p~. (2.19)

If B 1s positive definite, the geometric representation of
(2.19) is the set of points on and interior to the n-1
dimensional ellipsoid



xTBx = p2, (2.20)

The value of A from which the region (2.19) is
determined defines the best control given by (2.11) for the
worst disturbance in the class W and for the worst initial
state in the region (2.19). For initial states exterior
to this region, another value of A is needed in order to
define the optimal strategies.

C. SOLUTION VIA THE PATH EQUATIONS

Equations (2.11 - 2.14) provide a means of computing
the optimal strategies and resulting motion of the differ-
ential system. In order to perform these computations,
however, a positive definite solution of the matricial
equation (2.9) must be found. A root locus analysis, for
example, would require finding a steady-state solution of
a matrix Ricattl equation for each new value of X gr of the
elements of Q in order to find the eigenvalues of A from _
(2.14). It is possible, however, to f£ind eigenvalues of A
without directly solving (2.9). This is done by a root
square locus method which can be developed from the path
equations presented in Chapter 4 of Reference 5.

The path equations can be written in the form
Ve (x) = =3 (x,Vy,u,w) (2.21)

where X (x,V,,u,w) is given by (2.1). The subscripts denote
gradients with respect to x; u and w are given by (2.3),
and V(x) solves the main equation.

Equation (2.21) presents an expression for the time
rate of change of the gradient of the value of the game
along solution trajectories of the differential system.
The differential system (1.1) for the optimal strategies
(2.3) becomes

x = Ax - 3SV,. (2.22)
From equations (2.1) and (2.21) the path equations become

T

7~ _oyT
Vy = -2H QHX - V,A- (2.23)

10




Equations (2.22) and (2.23) can be thought of as a
system of 2n first order differential equations in terms of
unknowns ij and X (3 =1,...,n). Written in this manner
the path equations and differential system can be expressed
as follows:

x A - 43 X (2.24)
. _ 2.2
v, | T —oHTQH - AT v

The characteristic equation of this system 1is given by

------ %—------ = 0. (2.25)

where I denotes the nxXn identity matrix. The root square

locus is obtalned from the roots of this equation and will

be shown in the next section to be equivalent under certain
conditions to a multivariable root square locus of an undisturbed
optimal multichannel control system®’*.

If a positive definite solution of the matricial
equation (2.9) exists, then n of the 2n roots of (2.25) are
in the left half plane, and these stable roots are the
eigenvalues of A, which is given by (2.13). Sufficient
conditions for existence of a positive definite solution of
(2.9) are presented in the section following.

D. AN EQUIVALENT OPTIMAL MULTIVARIABLE CONTROL PROBLEM

Minimax and optimal control problems are solved by
similar methods. It will be demonstrated that the minimax
problem considered here can be reduced to an optimal
control problem with several control variables. The two
problems are equivalent in the sense that both have the
same terminal conditions and both lead to the same Riccati
equation. A solution of one problem leads immediately to
a solution of the other.

The only condition we shall need in order to demonstrate

the existence of an equivalent optimal control problem is
the requirement that the matrix S given by (2.6? be positive

11



semi-definite. This condition places a restriction on A
which confines the class of admissible disturbances so that
controllability is possible. We use a generalized definition
of controllability here which 1s relative to the class of
admissible disturbances.* The plant 1is said to be completely
controllable relative to the class W 1if for each disturbance
in W there exists a finite control capable of bringing the
motion from any initial state to any desired state in finite
time. This generalized controllability for a system with
disturbances as (1.1) can be shown to be the same as control-
lability in the usual sense for a certaln multivariable
control system with no disturbance if a certain matrix
exists. This 1s seen as follows,

Suppose  there exists an nXr matrix F where r<n which
has the property that for each admissible u(t) and w(t)
there is a finite piecewise continuous r-vector function
v(t) satisfying the equation

Fv(t) = bu(t) + cw(t) (2.26)

and also b has the property that for each such v(t) and
each w(t) in W there is an admissible u(t) such that
equation (2.26) is satisfied. Under these conditions for
every motion of (1.1) under a given disturbance and control,
there 1is an identical motion of the multi-channel system

x = AX + Fv (2.27)

for some v(t) and conversely. It is seen then that the
disturbed plant is completely controllable in the general-
ized sense relative to W 1f and only if the multi-channel
controlled plant is completely controllable in the usual
sense. With this motivation we shall analyze the differ-
ential game by analysis of an equlvalent optimal control
problem whose plant equations are in the form of (2.27).

A well known property of a positive semi-definite matrix
is that it can be written as the product of a rectangular
matrix and its transpose. Since S 1s positive semi-definite
there exlists an nxr matrix F having the property that

FFL = § (2.28)

¥ Compare with The relatlive controllabITity concept 1n the
"Linear Pursult-Evasion Game" of Ho, Bryson, and Baron 'Z

12




where r is the rank of $. This matrix F is used to define
the plant equations (2.27). The performance index of the
multi-channel optimal control problem is given by

T
alv] -=tj (yTay + vIIvidt + xT(T)Px(T) (2.29)
0]

where I is the rxr identity matrix, y is given by (1.2),
and the terminal set is exactly the same as for the minimax
problem.,

Solving the Hamilton-Jacobi equation for this problem,
a minimum of G[v] is given by V = xTPx where P is a solution
of the steady state matrix Riccati eqguation

T T

PIA + A 1T

P - PFI"1FP + HYQH = O (2.30)
and the optimal control law is given by

v = -1FlPx. (2.31)

We see from (2.28) that (2.30) is exactly the same equation
as (2.9); hence, the minimum cost of (2.29) is exactly the
same as the minimax value of (1.6) since the terminal set
is the same in both problems. Furthermore, sufficient
conditions for existence of a unique positive definite
solution of (2.30) have been developed by Kalman’. These
are that the pair [A,F] is completely controllable and the
pair [A,H] is completely observable. A unique positive
definite solution of (2.9) is sufficient to insure existence
and uniqueness of the solution of the optimal control
problem and asymptotic stability of the motion. Since the
same can be said of the minimax problem, the function

V(x) = xTPx may be interpreted either as the minimum cos?t
of {2.29) or as the minimax value of (1.6).

IV. A SECOND ORDER EXAMPLE

The application of the preceding theory to a worst
disturbance design problem is illustrated by solving a
second order example. Higher order problems can be solved
by this theory but the complexity of the numerical analysis
will, in most cases, require a computer. The sample problem
is as follows.

13



Given the second order dynamical system¥

il 0 1 X, 0 0
= + u-+ W (3.1)

X3 a 0 Xg -b c

and the cost functional
T

¢lu,w] :tj gy x? + qgexB + u® - Aw®ldt + xT(T)Px(T)
o
(3.2)

where X, , Xg, a, b, ¢, g;, g2, and A are scalars the last
three being non-negative, and the terminal set is

1im {x | X Px = 6 } P (3.3)
60
find the optimal strategies so that (3.2) is minimax.
Before solving this problem we shall examine 1t for

existence of unique stable solutions. For this problem
expression (2.6) becomes

0 0
5 = . (3.4)
where
A =D - i—g . (3.5)

* A physical model leading to this equation is the rotational
equation of a typical rocket in which the lateral drift is
neglected in the angle-of-attack expression. The rotational
equation is ® + c;o + c2B = O where o = ¢ + ay. In this
model ¢ represents the vehicle attitude angle, o the angle

of attack, B the engine thrust angle, o the angle of attack
due to wind disturbance, and ¢, and c; are the normalized
rotational acceleration coefficients assoclated with
aerodynamic and thrust forces.

14




Necessary and sufficient for S to be positive semi-definite
is the condition

2 c?
b° - T‘Z 0. (3-6)

Noting that the rank of S is at most one, we find that
the two solutions of (2.28) are given by

= = ( )
B = ) P = . 3"
1 ,\]—— 2 ’\/__

Each of these matrices defines an equivalent optimal control
problem of the form given by (2.27). One of these equivalent
optimal control problems has its plant equations given by

(el
]
o
=
>
(™
O

= 1 + v, (3.8)
\iz, a 0 X2 VA

and its cost function is

T
alvl = [ [quxl + gexs + v21dt + XT(T)Px(T) (3.9)
(e

where for this case the control v is a scalar.
Forming the controllability matrix [F,AF] we see that
for either of the two solutions of (2.28), its rank is two

if and only if A £ O; hence, [A,F] is controllable if and
only if

2
A > 2—2 and b £ O. (3.10)

Let us choose Q = I which is clearly positive definite, and

15




H = (3.11)

Forming the observability matrix [HT, ATHT] we find its
rank is two if a = 0 and g, and gz are non-negative, but
not both zero. If a=0, the rank is two only if q; is
positive. The observabillty condition that the rank is
two, along with the controllability condition (3.10) is
sufficient for the existence of a unique stable solution of
the problemn,.

After this examination, we shall solve the problem.
Due to the simplicity of this problem, we shall solve the
main equation. directly rather than taking the alternate
route via the path equations. By forming either the main
equation of the differential game or the Hamilton-Jacobil
equation of an equivalent optimal control problem and
assuming a solution in quadratic form we obtain the
matricial equation (2.9). Of the two solutions of this
equatlion the requirement of positive definiteness excludes
one, and the remaining one is given by

r/2{a+r)+Aqz a+r
A A
(3.12)
P =
a+r vo(a+r)+Agz
where
r =Va® + Aqy . (3.13)

It 1s seen from (3.12) and (3.13) that a positive definite
solution exists 1f A>0 and the non-negative numbers g, and
Q= are not both zero. If, however, a=0, it 1s required

that q, >0. These conditions for a solution given by (3.12)
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to be positive definite are exactly the same as those
determined by the controllability and observability exami-
nation before the solutions of the matricial equation were
found.

Knowing P in terms of A from equations (3.5), (3.12)
and (3.13) the optimal strategies are given as functions of

A by (2.11) and (2.12), and the motion is given by (2.13)
and (2.14). For this problem, equation (2.14) becomes

0] 1
T _ . (3.14)

-r ~2(a+r)+Ags

Because of positive definiteness of P, R is a stable matrix.

The eigenvalues of A are presented in Figures 1 and 2
with g1, gz, and A as variable gains. Figure 1 shows the
root locus pattern of the disturbed system with Aq
increasing where the ratio

Agy

Aq:a
assumes fixed values. These loci are, in actuality, the
stable half of the root square locus diagram we would have
obtained if the problem had been solved via the path
equations.

We can now specify a desired natural frequency and
damping ratio of the disturbed system and determine from
fhese corresponding values of Aq, and Agz. Since we have
a second order system, the expressions for Aq, and Aqgz are

2

Ag; = w* - a®, Age = 4€2w; - 2(a+w;). (3.15)

4
n
These expressions show the relationship between q;, gz, and
A which provides the desired point on the root locus.

Since A depends on A, which in turn depends on Xo and p, we
have a way of picking the weighting factors q, and gz in
terms of desired frequency and damping, the initial state,
ard the class of admissible disturbances which is defined by

p. Figure 2 shows a locus of roots as A varies for fixed
d:and Qz.
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For this second order system, we can compute an "ellipse
of initial states" in terms of the natural frequency and
damping ratio. Equation (2.20) for the second order system
becomes

b11X1° + 2bi1oxiXa + baexe® = p° (3.16)

where by;, b1z, and bzz are the elements of the matrix B
which is obtained by solving equation (2.18). For this
problem those elements are given in terms of natural fre-
quency w,, damping ratio {, and A as follows:

. (a+wp®)® 4+ UCRQ°
11 — 2
how,
[ (asuy?)?
biz = W - (3.17)
2wn2
. (a+wn2 )2 + Ll_gzwn‘ie
13 = (]
Uow,®
where
2
p, = -———c—— . (3-18)
Ab® - c®

The equations (3.16), (3.17), and (3.18) provide a
relationship between the initial state, the class of distur-
bances, and the multiplier A. A sketch of equation (3.16)

for { = .866 and wy = Wa 1s presented in Figure 3.

For this problem the worst disturbance 1s given by

w(t) = pl(a+w,®) x, (t) + 2Cw, xa (t)]. (3.19)
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The shape of the worst disturbance is presented in Figure 4
for the above values of { and wp and the initial condition

X3 (tO) = X110 X2 (tO) = 0.

IV. CONCLUSION

It has been found that the analytical design techniques
of linear optimal control can be extended to apply to a
minimax problem in which the energy of disturbance is bounded.
The main equation for this problem corresponds to the
Hamilton-Jacobl equation of a class of equivalent optimal
multivariable control problems. A certailn quadratic form was
found to provide a relatlonship between the class of admissible
disturbances and the set of initial conditions. Solution of
the problem yields a linear feedback control law which mini-
mizes a performance index subject to the disturbance which
maximlzes it. For a given plant, therefore, the class of
admissible disturbances for which linear control 1is optimal,
and the shape of the worst disturbance in the class, are well
defined.

Knowing the worst disturbance for which linear control
i1s optimal, the following observation becomes apparent. The
shape of the worst disturbance depends on the plant dynamics
in a very simple manner. Since the disturbance is a linear
combination of state variables, the frequencies of the
oscillation of the worst disturbance are the same as the
closed loop oscillations of the plant. A structural bending
mode, for example, in a boost vehicle would cause the worst
disturbance for this particular model to have an oscillatory
component at exactly the same frequency as the bending
vibration.

For this reason, a worst disturbance designh criterion
might be expected to be over-conservative. The philosophy
that nature is totally against you is, hopefully, unrealistic.
It might, however, provide better control than a theory
which ignhores disturbance effects altogether, as much linear
optimum control theory does. The questlion, from a practical
standpoint, is as follows.

Does a worst disturbance design criterion provide a
good control system for a less "hostile," more reasonable
class of disturbances?

This question should be investigated.
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